1260 VXI SWITCHING CARD

1260-64 18GHz MICROWAVE SWITCH MODULE

PUBLICATION NO. 980673-010

RACAL INSTRUMENTS
Racal Instruments, Inc.
4 Goodyear St., Irvine, CA 92618-2002
Tel: (800) RACAL-ATE, (800) 722-2528, (949) 859-8999; FAX: (949) 859-7139
Racal Instruments, Ltd.
480 Bath Road, Slough, Berkshire, SL1 6BE, United Kingdom
Tel: +44 (0) 1628604455 ; FAX: +44 (0) 1628662017
Racal Systems Electronique S.A.
18 Avenue Dutartre, 78150 LeChesnay, France
Tel: +33 (1) 3923 2222; FAX: +33 (1) 39232225
Racal Systems Elettronica s.r.I.
Strada 2-Palazzo C4, 20090 Milanofiori Assago, Milan, Italy
Tel: +39 (0)2 5750 1796; FAX +39 (0)2 57501828
Racal Elektronik System GmbH.
Technologiepark Bergisch Gladbach, Friedrich-Ebert-Strasse, D-51429 Bergisch Gladbach, Germany
Tel.: +49 22048442 00; FAX: +49 2204844219
Racal Australia Pty. Ltd.
3 Powells Road, Brookvale, NSW 2100, Australia
Tel: +612 9936 7000, FAX: +612 99367036
Racal Electronics Pte. Ltd.
26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513.
Tel: +65 7792200, FAX: +65 7785400
Racal Instruments, Ltd.
Unit 5, 25F., Mega Trade Center, No 1, Mei Wan Road, Tsuen Wan, Hong Kong, PRC
Tel: +852 2405 5500, FAX: +852 24164335
http://www.racalinstruments.com

PUBLICATION DATE: May 16, 2001

Copyright 2001 by Racal Instruments, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

WARRANTY STATEMENT

All Racal Instruments, Inc. products are designed and manufactured to exacting standards and in full conformance to Racal's ISO 9001 procedures.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your Racal customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@racalinstruments.com	
Telephone:	+1800 7223262	(USA)
	+44(0) 8706080134	(UK)
	+852 24055500	(Hong Kong)
Fax:	+19498597309	(USA)
	+44(0) 1628662017	(UK)
	+852 24164335	(Hong Kong)

RETURN of PRODUCT

Authorization is required from Racal Instruments before you send us your product for service or calibration. Call your nearest Racal Instruments support facility. A list is located on the last page of this manual. If you are unsure where to call, contact Racal Instruments, Inc. Customer Support Department in Irvine, California, USA at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at:
helpdesk@racalinstruments.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to Racal Instruments, and shall not, without express written permission of Racal Instruments, be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than Racal Instruments. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from Racal Instruments.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

This equipment contains voltage hazardous to human life and safety, and is capable of inflicting personal injury.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/twoprong adapter. This will defeat the protective feature of the third conductor in the power cord.

Maintenance and calibration procedures sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures and heed warnings to avoid "live" circuit points.

Before operating this instrument:

1. Ensure the instrument is configured to operate on the voltage at the power source. See Installation Section.
2. Ensure the proper fuse is in place for the power source to operate.
3. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- \quad shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until performance is checked by qualified personnel.

This page was left intentionally blank.

NOTE FOR SYSTEMS WITH 1260-OPT OIT

The "Module-Specific Syntax" section of this manual shows the command syntax for the 1260-01S Smart Card. If you are using the newer 1260-01T Smart Card, the commands will NOT work as shown.

Consult the 1260-01T Manual for a description of the commands which may be used with the 126001T Smart Card.

The channel numbers described in this manual are valid for the 1260-01T. The channel numbers continue to be used for the 1260-01T.

The syntax of the commands which use channel numbers has changed for those cards controlled by the 1260-01T.

The new syntax used to close a channel is:
CLOSE (@ <module address> (<channel>))
For example, with for a relay module whose <module address> is set to 7, closing <channel> 0 is performed with the command:

CLOSE (@ 7 (0))
Using the older 1260-01S, the command would be (as shown in this manual):
CLOSE 7.0
Many other command syntax differences exist. Please consult chapter 2 of the 1260-01T manual for a description of the commands which are available for the 1260-01T.

Control Information for the 1260-64 (A, B, and C)

The following information describes the control-register-to-relay-channel mapping for a 1260-64 Relay Module. This information may be used to control a 1260-64 when using a 1260-01T in the register-based mode of operation.

There are two types of relays which populate the 1260-64 module. The standard relays (channels 0 through 115), are each controlled by a single bit within an 8 -bit Control Register. Each of these relays is controlled by setting or clearing a single bit within a Control Register. Control Registers on the module operate 8 channels simultaneously. There are eight control bits per Control Register. Setting the bit to a 1 closes the relay; setting the bit to a 0 opens the relay. These channels may be operated independently, without regard to the state of the other relays on this module.

The RF relays are single-pole, 6 throw type (1P6T) type relays. These are channels 200 through 505. Channels 200 through 205 represent the first 1P6T MUX. Channels 500 through 505 represent the last 1P6T MUX.

Care must be taken by the programmer to ensure that at most one of the 6 throws in a MUX is connected at any one time. Failure to observe this guideline could result in damage to the 1260-64, the external circuitry and instrumentation, or both.

The 1260-64A contains 4 1P6T relays. These are denoted by channels 200 through 205, 300 through 305 , 400 through 405 , and 500 through 505.

The 1260-64B contains 2 1P6T relays. These are denoted by channels 200 through 205 and 300 through 305.

The 1260-66C contains a single 1P6T relays. This is denoted by channels 200 through 205.
The table below shows the mapping from logical channels to control bits. The logical channels are used when operating the relay module in message-based mode. The control bits within the Control Registers are used to operate the module in register-based mode.

Each Control Register is located 2 addresses from the previous Control Register. That is, each Control Register is located at an odd address. This is shown in Table 2-2 of the 1260-01T manual. Control Register is located at the "Base A24 Address" for the module. Consult the "Register-Based Operation" Section of Chapter 2 of the 1260-01T manual for a description of calculating control register addresses.

Channel	Control Register	Control Bit
0	0	3
1	0	7
2	1	3
3	1	7
4	2	3
5	2	7
6	3	3
7	3	7
8	0	2
9	0	6
10	1	2
11	1	6
12	2	2
13	2	6
14	3	2
15	0	6
100	0	1
101	1	5
102	1	1
103	2	5
104	2	1
105		5

Channel	Control Register	Control Bit
106	3	1
107	3	5
108	0	0
109	0	4
110	1	0
111	1	4
112	2	0
113	2	4
114	3	0
115	3	4
200	4	0
201	4	1
202	4	2
203	4	3
204	4	4
205	4	5
300	5	0
301	5	1
302	5	2
303	5	3
304	5	4
305	5	5
400	6	0
401	6	1
402	6	2
403	6	3
404	6	4
405	6	5
500	7	0
501	7	1
502	7	2
503	7	3
504	7	4
505	7	5

This page was left intentionally blank.

Table of Contents

Chapter 1
MODULE SPECIFICATIONS 1-1
General 1-1
Specifications 1-2
1x16 Switch Arrays Specifications 1-2
General 1-3
Chapter 2
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-1
Option 01 Installation 2-1
Lockout Keys 2-2
Module Installation 2-2
Relay Bank Configuration 2-2
Chapter 3
MODULE SPECIFIC SYNTAX 3-1
General 3-1
PDATAOUT 3-2
PSETUP 3-3
CLOSE 3-3
SETUP 3-3
Chapter 4
CONNECTOR PIN CONFIGURATION 4-1
RF Relays 4-1
Relay Banks 4-1
Chapter 5
THEORY OF OPERATION. 5-1
PCB Assemblies 5-1
Chapter 6
DRAWINGS 6-1
Chapter 7
PARTS LIST 7-1
Chapter 8
OPTIONAL HARNESS ASSEMBLIES 8-1
Chapter 9
PRODUCT SUPPORT 9-1
Product Support 9-1
Reshipment Instructions 9-1
Support Offices 9-2

List of Figures

Figure 1-1, 1260-64 ..1-1

Figure 4-1, 1260-64 Front Panel... 4-2
Figure 4-2, Relay Bank Pin Configuration (J1) ... 4-3
Figure 4-3, Internal Supply Sink Driver Example.. 4-4
Figure 4-4, External Supply Sink Driver Example..4-4
Figure 4-5, Internal Supply Source Driver Example .. 4-5
Figure 4-6, External Supply Source Driver Example ...4-5

Table 4-1, 1260-64 Pin Assignments .. 4-3

This page was left intentionally blank.

Chapter 1

MODULE SPECIFICATION

General

The 1260-64 consists of up to four 1P6T, 186 Hz switches and two 1X16 switches. The 1×16 switches are intended to be used to drive external relays, although other applications are possible.

Figure 1-1, 1260-64

Sink Driver, VXI +24V Supply
(External flyback-suppression diodes are required when switching inductive loads.)

Maximum Total VXI Current Available to Drive External Loads

+24 V	5 A (May be further limited by mainframe capability).
+12 V	5 A (May be further limited by mainframe capability)

$+5 \mathrm{~V} \quad 6 \mathrm{~A}$ (May be further limited by
mainframe capability)
Maximum Current per Bank 4A (Internal or External Supply)

Maximum Current per Switch .5Amp
Maximum Switchable Voltage 30V, DC Only
Maximum Switchable Power
Per Channel 30W, 62.5 VA (Resistive Load)

Path Resistance:
Worst Case $<1.8 \Omega$
End of Life $<2.7 \Omega$

General

Power Requirements (lpm)
$+5 \mathrm{~V} \quad 0.4 \mathrm{~A}$ (2.8A with Option 01 installed)
+12 V 320 mA per RF relay (energized) plus current drawn by external loads on 1×16 relay banks.
+24 V 10mA per relay (energized)
Cooling Requirements
Airflow $\quad 4.0 \mathrm{~L} / \mathrm{S}$ at $0.5 \mathrm{mmofH}_{2} \mathrm{O}$
Weight
$5.0 \mathrm{lbs}(2.25 \mathrm{Kg})$
$5.28 \mathrm{lbs}(2.38 \mathrm{Kg})$ with Option 01

This page was left intentionally blank.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

Reshipment Instructions

Option 01 Installation

1. Before unpacking the switching module, check the exterior of the shipping carton for any signs of damage. All irregularities should be noted on the shipping bill.
2. Remove the instrument from its carton, preserving the factory packaging as much as possible.
3. Inspect the switching module for any defect or damage. Notify the carrier immediately if any damage is apparent.
4. Have a qualified person check the instrument for safety before use.
5. Use the original packing if it is necessary to return the switching module to Racal Instruments for calibration or servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
6. If the original packing is unavailable, wrap the switching module in plastic sheeting and use plastic spray foam to surround and protect the instrument.
7. Reship in either the original or a new, sturdy shipping carton.

Installation of the Option 01 into the 1260-64 is described in the Installation section of the 1260-Series VXI Switching Cards Manual. Note that lockout keying for the double-wide 1260-64 module differs from that described in the 1260 manual section.

Lockout Keys

Module Installation

Relay Bank Configuration

The lockout key configuration for the 1260-64 is slightly different from that of the other 1260 modules because the 1260-64 occupies two VXI slots. Lockout key mounting holes are present in the front panel for each of the occupied VXI slots.

If the module is not the leftmost nor the rightmost module in the group, lockout key "A" (Racal Instruments P/N 455540) should be installed in the location corresponding
to the module's left slot. Lockout key "C" (Racal Instruments P/N 455541) should be installed in the location corresponding to the module's right slot.

If the module is the leftmost module in the group, lockout key " C " should be installed in the location corresponding to the module's right slot.
if the module is the rightmost module in the group, lockout key "A" should be installed in the location corresponding to the module's left slot.

Installation of the 1260-64 Switching Module into a VXI mainframe, including the setting of DIP switches, is described in the Installation section of the 1260-Series VXI Switching Cards Manual. The ID byte DIP switches should be set as follows:

$1260-64 \mathrm{~A}$	$5=O F F$	$6=O F F$
$1260-64 \mathrm{~B}$	$5=O N$	$6=O F F$
$1260-64 \mathrm{C}$	$5=O F F$	$6=O N$

Note that incorrect setting of the ID byte DIP switches will cause an incorrect module ID to be reported to the user in response to a PDATAOUT command. All other module functionality is unaffected by the setting of the ID byte switches.

If two banks of DC relays are to be used, various internal jumpers must be installed. Examples of four possible configurations are shown in Figures 4-3 through 4-6. The card is shipped from the factory without any jumpers installed.

To access the jumpers, remove the right side cover from the module. The jumpers are located on the large PCB Assembly. There are two banks of relays. Each bank is configured independently, and the two configurations do not have to match. The banks are designated Bank A and Bank B.

The first consideration when configuring the relay banks is whether the bank is to act as a source driver or a sink driver. (A sink driver connects its output to ground to energize a load; a source connects its output to B+ to energize a load.) Eight push on jumpers are to be installed as shown below:

Bank A Source Driver: W5.
Bank A Sink Driver: W6.
Bank B Source Driver: W11.
Bank B Sink Driver: W12.
The next consideration is the source of power for the external loads on Bank A. If an external supply is to be used, the jumpers at locations W3 and W4 are to be removed. If the VXI +5 V supply is to be used, eight jumpers are to be installed at location W3. (1-2, 3-4, 5-6, etc.) If the VXI +12 V supply is to be used, three jumpers are to be installed at location W4 (1-2, 34, and 5-6) If the $\mathrm{VXI}+24 \mathrm{~V}$ supply is to be used, the three jumpers are to be installed at location W4 (11-12, 13-14, 15-16).

The final consideration is the source of power for the external loads on Bank B. If an external supply is to be used, the jumpers at locations W8 and W9 are to be removed. If the VXI + SV supply is to be used, eight jumpers are to be installed at location W8. (1-2, 3-4, $5-6$, etc.) If the $\mathrm{VXI}+12 \mathrm{~V}$ supply is to be used, three jumpers are to be installed at location W9 (1-2, 3-4, and 5-6) If the VXI +24 V supply is to be used, the three jumpers are to be installed at location W9 (11-12, 13-14, 15-16).

The right cover can now be reinstalled on the module.

This page was left intentionally blank.

Chapter 3

MODULE SPECIFIC SYNTAX

General

The Module Specific Syntax for the 1260-64 is required for use in the OPEN and CLOSE commands. It will also appear in data output by the 1260 Series Master in response to the PDATAOUT command.

The Module Specific Syntax for the $1260-64$ module is as follows:
<mod addr>.<bank no><relay no>
where <mod addr> is the address of the 1260-64.

NOTE

The <mod addr> used here is NOT the VXIbus defined logical address of the 1260 Series Master. It is peculiar to the 1260 Series and describes the switching module in relation to the 1260 Master. This address corresponds to the binary value of the switch setting of SW1 on the switching module PCB.
<bank no> is a reference to the bank of the relay to be switched. It is a single digit number. The range for a valid <bank no> depends on the particular 1260-64 model used:

1260-64A: $0 \leq$ <bank no> ≤ 5
1260-64B: $0 \leq$ <bank no> ≤ 3
1260-64C: $0 \leq$ <bank no> ≤ 2
The <bank no> refers to the following relay banks:
$0 \quad 1 \times 16$ Bank A
1 1x16 Bank B
2 1x6 Relay S1
3 1x6 Relay S2 (A and B models only)
$4 \quad 1 \times 6$ Relay S3 (A model only)
51 1x6 Relay S4 (A model only)
<relay no> refers to the relay to be operated. This is a two-digit
number. For Bank A and Bank B, this value must be between 00 and 15. For relays S1, S2, S3, and S4, this must be between 00 and 05 . Note the leading 0 for relays 00 through 09 is required.

Refer to Figures 4-1,4-2, and Table 4-1 for banks, relay numbers, and connector pins for the 1260-64 module.

If more than one connection is to be made or broken on the 1260-64 with contiguous relays, the following format is supported:
<mod addr>.<bank no><relay no>-<bank no><relay no>
Multiple groups of relays can be specified on a single command line by separating the path designators by commas. Command lines terminate at the end of the line.

EXAMPLE:

OPEN 3.000,004-015,100-1 15,201,303

PDATAOUT

The PDATAOUT command causes the specified module to transmit the CLOSED state of the relays in the 1260-64 module. The syntax used is:

PDATAOUT <mod addr>[;<mod addr>][;<mod addr>]....
The response to the PDATAOUT command for the $1260-64$ is as follows:
<header>
<mod addr>. <bank no><group no>[,...]
<bank no><group no>[,...]
<mod addr>.END
where <header> is as follows:
1260-64A: <mod addr>. 1260-64A Quad 1x6 SWITCHING MODULE
1260-64B: <mod addr>. 1260-64B Dual 1x6 SWITCHING MODULE
1260-64C: <mod addr>. 1260-64C Single 1x6 SWITCHING MODULE

Note the actual <header> sent is determined by the setting of the ID Byte DIP switches on the module, and is independent of the number of microwave relays installed.

PSETUP

The PSETUP command causes the specified module to transmit its sequence mode. The supported sequence modes are IMM (Immediate), BBM (Break-Before-Make), and MBB (Make-Before-Break). The syntax used is:

PSETUP <mod addr>[;<mod addr>][;<mod addr>]....
The response to the PSETUP command for the 1260-64 is as follows:
<header>
<mod addr>.<seq mode>
<mod addr>.END
where <seq mode> is IMM, BBM, or MBB, and
where <header> is as follows:
1260-64A: <mod addr>. 1260-64A Quad 1x6 SWITCHING
MODULE
1260-64B: <mod addr>. 1260-64B Dual 1x6 SWITCHING
MODULE
1260-64C: <mod addr>. 1260-64C Single 1x6 SWITCHING MODULE

Note the actual <header> sent is determined by the setting of the ID Byte DIP switches on the module, and is independent of the number of microwave relays installed.

CLOSE

The 1260-64 1×6 microwave relays (S1 through S4) each allow at most one of the six relays to be closed at any one time. The card implements an "implicit exclusion list" for each 1×6 microwave relay. For example, if the 1260-64 module address is 3 , and relay 3.204 is currently closed, then the command:

CLOSE 3.201
will cause the card to open relay 3.204 , and then close relay 3.201. Similarly, if the command:

CLOSE 3.200-205
is issued, the card will close only relay 3.205 , with relays 3.200 through 3.204 being opened prior to closing relay 3.205.

SETUP

The SETUP command affects only the DC relays in Banks A and B. These relays may be programmed as Break-Before-Make,

Make-Before-Break, or Immediate. The microwave relays (S1 through S4) are always implemented as Break-Before-Make (BBM) to ensure that at most 1 of 6 relays are closed at any one time.

The 1260-64 supports most standard 1260 features. These include Confidence Mode, Equate/Exclude/Scan Lists commands, and the STORE/RECALL commands.

Chapter 4

CONNECTOR PIN CONFIGURATION

RF Relays

Relay Banks

Figure 4-1 shows the location of the four RF switches on the front panel of the 1260-64 module. The designations for each of the SMA male connectors on the switches are also shown.

Figure 4-2 shows the pin locations for the 50-pin Relay Bank connector, J1. Table 4-1 lists the J1 pin signals. Connector J1 is Racal Instruments Part Number 601856-050. The mating connectors are Racal Instruments Part Number 601855-050 for the connector body, and 601857 for the pins.

Each of the two relay banks can be independently configured as a sink or a source driver. Either the VXI mainframe or an external supply can be selected.

WARNING
The user must use caution when wiring to the module to prevent damage to the relay banks.

The 1260-64 contains some internal protection circuitry. The internal current sourcing and handling capabilities of the module and the mainframe must not be exceeded. Properly interface external loads, especially if they are inductive. if an external supply is used, the external $B+$ and B - lines MUST be connected to the External B+ and the External Ground pins on J1. Flyback-clamping suppression diodes MUST be connected across any inductive loads. (Switching of AC inductive loads is not recommended.) Figures 4-3 through 4-6 show correct methods interfacing to the 1260-64 relay banks.

Figure 4-1, 1260-64 Front Panel

Table 4-1, 1260-64 Pin Assignments

BankA Pin	Function	BankB Pin	
A,C,E,H	External B+	B,D,F,J	External B+

X, y, z, AA	External Ground	CC,DD,EE	External Ground
$z, A A, B B$	External Ground	FF,HH	External Ground

d	Contact 0	p	Contact 0
L	Contact 1	V	Contact 1
b	Contact 2	T	Contact 2
S	Contact 3	M	Contact 3

a	Contact 4	W	Contact 4
k	Contact 5	e	Contact 5
t	Contact 6	r	Contact 6
w	Contact 7	m	Contact 7

j	Contact 8	u	Contact 8
R	Contact 9	z	Contact 9
x	Contact 10	N	Contact 10
P	Contact 11	K	Contact 11

Y	Contact 12	U	Contact 12
h	Contact 13	c	Contact 13
v	Contact 14	n	Contact 14
s	Contact 15	f	Contact 15

Figure 4-2, Relay Bank Pin Configuration (J1)

Figure 4-3, Internal Supply Sink Driver Example

Figure 4-4, External Supply Sink Driver Example

Figure 4-5, Internal Supply Source Driver Example

Figure 4-6, External Supply Source Driver Example

This page was left intentionally blank.

Chapter 5

THEORY OF OPERATION

PCB Assemblies

The 1260-64 consists of three PCB Assemblies. The smallest is used only to mount connector J 1 to the front panel. The other small PCB Assembly is required to pass the local bus signals, LBUSO through LBUS 11, through the unused second slot of this double-wide module. The VXI IACK and BUS GRANT 0 through 3 signals are jumpered to allow the PCB Assembly to be used in autoconfiguring backplanes.

The main logic PCB Assembly contains DC relay banks, 1260 Local Bus interface circuitry, and drivers for both the relay bank and the RE relays. The VXI interface is described in the Theory of Operation section of the 1260 Series VXI Switching Cards Manual. The relay driver circuitry is contained in monolithic IC driver chips. The relay banks are shown in Figures 4-3 through 4-6. Not shown in these figures are internal clamp diodes. These diodes will clamp minor inductance effects, such as those caused by wiring; but they are not intended to replace suppression diodes across the solenoid coils of external relays, or other inductive loads. Referring to the schematic diagram, the diodes between the Contact lines and ground clamp switch-toopen transients when the bank is used as a source driver. The diodes between the Contact lines and the External B+ clamp switch-to-open transients when the bank is used as a sink driver.

This page was left intentionally blank.

Chapter 6 DRAWINGS

407089, -001, -002, Final Assembly, 1260-64 6-3
405055, PCB Assembly, L-BUS Bypass. 6-4
435055, Schematic, L-BUS Bypass 6-5
405057 PCB Assembly, Connector Interface 6-6
435057 Schematic, Connector Interface 6-7
405056, PCB Assembly, 1260-64 6-8
435056, Schematic, 1260-64 6-9

This page was left intentionally blank.

(3) INSTALL WIRE (ITEM 10) TO W1,2 \& 3 ON CIRCUIT SIDE AS SHOWN.
2 INK STAMP CURRENT REVISION ON COMPONENT SIDE APPROX. WHERE SHOWN.

1. REFERENCE SCHEMATIC 435057 .

[^0]

Chapter 7 PARTS LIST

407089, Final Assembly, 1260-64A 6-3
407089-001, Final Assembly, 1260-64B 6-4
407089-002, Final Assembly, 1260-64C. 6-5
407090, Ship Kit, 1260-64 6-6
405055, PCB Assembly, L-BUS Bypass. 6-6
405057 PCB Assembly, Connector Interface 6-6
405056, PCB Assembly, 1260-64 6-7
List of Suppliers 6-9

This page was left intentionally blank.

407089 FINAL ASSY., 1260-64A

REF	\| RACAL INST	।	1 I	1 I
I DESIG	$1 \mathrm{P} / \mathrm{N}$	1 DESCRIPTION	1 FSC	I MANUFACTURER'S P/N
\| $\{1\} 1$	1405056	\| PCB ASSY., 1260-64	121793	1405056
\|\{2\} 1	1405055	\|PCB ASSY., L-BUS BYPASS	121793	1405055
(5511	1455901	\|PANEL, RIGHT SIDE	121793	1455901
\| $\{6\} 1$	1455779-003	\| PANEL, SIDE, LEFT	121793	1455779-003
I \{ 7 \} 1	1455777-001	\| PANEL, REAR, DOUBLE	121793	1455777-001
(8 \} 1	1455818-001	\| PANEL, TOP, 2X	121793	\| 455818-001
l \{9\}1	1455819-001	\| PANEL, BOTTOM, 2 X	121793	1455819-001
(10)1	1456042	IFRONT PANEL, 1260-64	121793	1456042
\| \{11\}1	1456056-001	\| BRACKET, HANDLE SUPPORT, BOTTOM	121793	1456056-001
\| \{12\}1	1456056-002	IBRACKET, HANDLE SUPPORT, TOP	121793	1456056-002
\| $\{14\} 1$	1405057	IPCB ASSY, CONNECTOR INTERFACE	121793	1405057
\| $\{16\} 4$	1407016	IRELAY ASSY., SP6T, 18 GHZ	121793	1407016
\| $\{21\} 4$	1611052	IKEY, POLARIZING, PLUG	100779	187077-1
($\{22\} 2$	1611264	IHANDLE, EXTRACTOR, BOTTOM	162559	120817-327
\| \{23\}2	1611265	\|HANDLE, EXTRACTOR, TOP	162559	120817-328
\| $\{24\} 1$	1611266	I MOUNTING HARDWARE, HANDLE	162559	\|21100-745
\| \{29\}2	1615292	ISCREW, PFL, 4-40 X . 312	1-	-
1 \{30\} 2	1615514	ISCREW, PFH, 2-56 X .312	$1-$	\| -
\| \{31 \} 32	1615539	ISCREW, PFH, 4-40X, 125	1-	$1-$
$1\{34\} 2$	1616405	ISCREW, PFH, M2.5-.45 X 12	1-	\| -
[35 \} 8	1616480	ISCREW, PFH, 4-40 X . 375	$1-$	1-
[\{36\}6	1616251	ISCREW, PPH, SEMS ASSY, 4-40X. 250	178189	ISEMS W/SQ CONE WA.
[(43) 1	1921212-023	(LABEL, VXI, 1260-64	121793	1921212-023
\| (44)A/R	1920962	[LOCTITE, 242, MED STR.	105972	1272
\| $\{46\} 1$	1921059	1LABEL, CAUTION, STATIC	+21793	1921059
\| \{47\}2	1921148-001	ILABEL SET VXI	121793	1921148-001
\| $\{48\} 1$	1921309	\|LABEL, VXI SWITCH ID	121793	1921309
\| $\{49\} 1$	1407090	\|SHIPPING KIT, 1260-64	121793	1407090
($\{51\} 1$	1921423	\| LABEL, CE MARKING	121793	1921423

407089-001 FINAL ASSY., 1260-64B

1 REF	IRACAL INST	1	1	1
1 DESIG	$1 \mathrm{P} / \mathrm{N}$	DESCRI PTION	FSC	\| MANUFACTURER'S P/N
I 1 1\}1	1405056	IPCB ASSY., 1260-64	121793	1405056
! 2 \}\}1	1405055	IPCB ASSY., L-BUS BYPASS	121793	1405055
[(5)1	1455901	IPANEL, RIGHT SIDE	121793	1455901
(6) 1	1455779-003	IPANEL, SIDE, LEFT	121793	1455779-003
\| 17)1	1455777-001	IPANEL, REAR, DOUBLE	121793	1455777-001
\| 48$\} 1$	1455818-001	IPANEL, TOP, 2X	\| 21793	1455818-001
\| $\{9\} 1$	1455819-001	IPANEL, BOTTOM, 2X	\| 21793	1455819-001
(10)1	1456042	IFRONT PANEL, 1260-64	\| 21793	1456042
(111) 1	1456056-001	IBRACKET, HANDLE SUPPORT, BOTTOM	121793	1456056-001
(12.1	1456056-002	IBRACKET, HANDLE SUPPORT, TOP	121793	1456056-002
1 (13) 2	1456065	IPLATE, BLANKING, 1260-64	121793	1456065
\| $\{14\} 1$	1405057	I PCB ASSY., CONNECTOR INTEREACE	121793	1405057
(116) 2	1407016	IRELAY ASSY., SP6T, 18 GHZ	121793	1407016
1 \{21\}2	1611052	IKEY, POLARIZING, PLUG	100779	187077-1
\| $\{22$)2	1611264	IHANDLE, EXTRACTOR, BOTTOM	162559	\| 20817-327
\| $\{23\} 2$	1611265	IHANDLE, EXTRACTOR, TOP	162559	\| 20817-328
\| $\{24\} 1$	1611266	IMOUNTING HARDWARE, HANDLE	162559	121100-745
\| $\{29\} 2$	1615292	ISCREW, PFL, 4-40 X +312	1-	1-
l $\{30\} 2$	1615514	1SCREW, PFH, 2-56 X . 312	$1-$	1-
\| $\{31\} 32$	1615539	\|SCREW, PFH, 4-40X . 125	1	1-
\| $\{34\} 2$	1616405	\|SCREW, PFH, M2.5-.45 X 12	1-	1-
(3 35)8	1616480	\|SCREW, PFH, 4-40 X . 375	$1-$	1-
1 (36)6	1616251	ISCREW, PPH, SEMS ASSY, 4-40X. 250	178189	I SEMS W/SQ CONE WA.
$1(37) 8$	1616255	ISCREW, PPH, SEMS ASSY, 6-32X. 312	178189	ISEMS W/SQ CONE WA.
(433)	1921212-023	\| 4 ABEL, VXI, 1260-64	121793	1921212-023
\| $\{44\} A / R$	1920962	\|LOCTITE, 242, MED STR.	105972	1272
\| $\{46\} 1$	1921059	\|LABEL, CAUTION, STATIC	121793	1921059
\| $\{47$ \} 2	1921148-001	\|LABEL SET VXI	121793	1921148-001
\| 4 48) 1	1921309	\|LABEL, VXI SWITCH id	\| 21793	1921309
\| $\{49\} 1$	1407090	\|SHIPPING KIT, 1260-64	121793	1407090
\| (51\}1	1921423	!LABEL, CE MARKING	121793	1921423

[^1]407089-002 FINAL ASSY.. 1260-64C

I REF	\|RACAL-INST	1	।	1
1 DESIG	$1 \mathrm{P} / \mathrm{N}$	1 DESCRIPTION	1 FSC	1 MANUFACMURER'S P/N
1 [1] 1	1405056	\| PCB ASSY., 1260-64	121793	1405056
(2)1	1405055	\|PCB ASSY., L-BUS BYPASS	121793	1405055
\| 55$\} 1$	1455901	IPANEL, RIGHT SIDE	121793	1455901
! \{6\} 1	1455779-003	\| PANEL, SIDE, LEF'	121793	1455779-003
1(7) 1	1455777-001	\| PANEL, REAR, DOUBLE	121793	1455777-001
\|\{8\}1	1455818-001	\| PANEL, TOP, 2X	121793	1455818-001
199]	1455819-001	\| PANEL, BOTTOM, 2X	121793	1455819-001
\| $\{10\} 1$	1456042	\|FRONT PANEL, 1260-64	121793	1456042
\|\{11\}1	1456056-001	\| BRACKET, HANDLE SUPPORT, BOTTOM	121793	1456056-001
\| $\{12\} 1$	1456056-002	\| BRACKET, HANDLE SUPPORT, TOP	121793	1456056-002
\|\{13\} 3	1456065	1 PLATE, BLANKING, 1260-64	121793	1456065
\| $\{14\} 1$	1405057	\| PCB ASSY, CONNECTOR INTERFACE	121793	1405057
\| $\{16\} 1$	1407016	\| RELAY ASSY., SP6T, 18 GHZ	121793	1407016
\| $\{21\} 1$	1611052	\| KEY, POLARIZING, PLUG	100779	\| 87077-1
\|\{22\}2	1611264	\|HANDLE, EXTRACTOR, BOTTOM	162559	120817-327
1\{23\}2	1611265	\| HANDLE, EXTRACTOR, TOP	162559	120817-328
\| $\{24\} 1$	1611266	\| MOUNTING HARDWARE, HANDLE	162559	121100-745
\| $\{29$) 2	1615292	ISCREW, PFL, 4-40 X . 312	$1-$	1-
$1\{30\} 2$	1615514	ISCREW, PFH, 2-56 X .312	1 -	$1-$
i\{31\}32	1615539	ISCREW, PFH, 4-40X . 125	1 -	1 -
\|\{34\}2	1616405	ISCREW, PFH, M2.5-.45 X 12	1-	$1-$
1 (35) 8	1616480	ISCREW, PFH, 4-40 X . 375	$1-$	$1-$
I $\{36\} 6$	1616251	ISCREW, PPH, SEMS ASSY, 4-40X. 250	178189	ISEMS W/SQ CONE WA.
\| \{37\} 12	1616255	ISCREW, PPH, SEMS ASSY, 6-32X. 312	178189	ISEMS W/SQ CONE WA.
l $\{43$) 1	1921212-023	\|LABEL, VXI, 1260-64	121793	1921212-023
I $\{44\}$ A/R	1920962	ILOCTITE, 242, MED STR.	105972	1272
I $\{46\} 1$	1921059	ILABEL, CAUTION, STATIC	121793	1921059
I\{47\} 2	1921148-001	ILABEL SET VXI	121793	1921148-001
! 48 \} 1	1921309	ILABEL, VXI SWITCH ID	121793	1921309
\| $\{49\} 1$	1407090	ISHIPPING KIT, 1260-64	121793	1407090
l $5^{51\}}$	1921423	ILABEL, CE MARKING	121793	1921423

```
407090 - SHIP KIT, 1260-64
```

REF	\|RACAL INST	1 l	1	1 l
DESIG	P/N	DESCRIPTION	FSC	I MANUFACTURER'S P/N
(\{1\}2	1455541	\|KEY, LOCKOUT, TTL, A/C	121793	1455541
\|\{2\}2	1455542	। KEY, LOCKOUT, TTL, A/C	121793	1455542
\| 4 \} 1	1601855-050	I CONNECTOR, SGMC. CABLE Plug	121793	1601855-050
1\{5\}50	1601857	ICONTACT, SGMC. MAIL	128198	IM5422N
1 \{7) 4	1615013	\| SCREW, PPF, 2-56 X . 188	$1-$	$1-$
\|\{9]64	1601195	\| PLUG, JUMPER, 0.1 CTR, LOW PROFILE	100779	1530153-2
\|\{11\}1	1980673-010	IMANUAL, 1260-64 MODULE	121793	1980673-010

REF	IRACAI INST	1 I	1	1 MANUPACTURER's PIN
DESIG	$1 \mathrm{P} / \mathrm{N}$	DESCRIPTION	1 FSC	I MANUFACTURER'S P/N
\|P1	1601675-001	ICONNECTOR, EUROCARD, 96 PIN MOD.	121793	1601675-001
\| P2	1601675-001	ICONNECTOR, EUROCARD, 96 PIN MOD.	121793	1601675-001
$1 \mathrm{P9}$	1602094-012	ICONNECTOR HOUSING, CABLE RECEPT, 12 PIN	122526	165043-031
1 1 1\} 1	1415055	IPCB, L-BUS BYPASS, 1260 (UNLOADED)	121793	1415055
\| $\{6\}$ A/R	1523333	IWIRE, TEFLON STRANDED, 22 GA , ORG	192194	15855/7-ORG
($\{7$) A / R	1523888	\|WIRE, TEFLON STRANDED, 22 GA, GRY	192194	15855/7-GRY
\|\{10\}4	1611311	ITERMINAL, CRIMP	122526	148251-000
\|\{12\}1	1610777	1 CABLE TIE	116956	108-432
\|\{13\}2	1610802	\|FASTENER, CHASSIS SWAGE, 4-40	188245	\|B1591B-11

405057 - PCB ASSY, CONN INTFC, 1260-64

REF	\|RACAL INST	I		
DESIG	$1 \mathrm{P} / \mathrm{N}$	DESCRIPTION	FSC	MANUFACTURER'S P/N
し1	1602105	ICABLE ASSY.. PCB INTERFACE	121793	1602105
1 J 2	1602105	ICABLE ASSY., PCB INTERFACE	121793	1602105
1J200	1601856-050	ICONNECTOR, SMPL, PCB RECEPT	121793	1601856-050
(111	1415057	IPCB, CONNECTOR INTERFACE, 1260-64 (UNLOADED)	121793	1415057
1 (4)2	1615014	ISCREW, PPH, 2-56 X . 250	$1-$	$1-$
1(5)2	1610980	IWASHER, FLAT, \#2 X . 062	$1-$	+-
I $\{10\}$ A/R	1522555	\|WIRE, TEFLON STRANDED, 18 GA , GRN	$1-$	$1-$
($\{13\} \mathrm{A} / \mathrm{R}$	1920962	\|LOCTITE, 242. MED STR.	105972	1272

Parts List 7-6

405056 - PCB ASSY, 1260-64

REF	IRACAL INST	1	I	1
DESIG	$1 \mathrm{P} / \mathrm{N}$	DESCRIPTION	1 FSC	MANUFACTURER'S P/N
1 U 20	1231120	IIC, 8-BIT, PARALLEL/SERIAL OUT S.R.	118324	174 HCT 166 D
1 U21	1231131	IIC, DIGITAL, SHIFT REGISTER	118324	\| PC74HCT164D
1 U 22	1231130	IIC, DIGITAL, Flif flop	118324	1 PC74HC273
1 U 23	1231098	IIC, SOIC TRANSISTOR	156289	IULN-2803LW
1024	1231120	IIC, 8-bit, Parallel/SERIAL OUT S.R.	118324	$174 \mathrm{HCT166D}$
IU25	1231131	IIC, DIGITAL, SHIFT REGISTER	118324	1 PC74HCT164D
1026	1231130	IIC, DIGITAL, FLIP FLOP	118324	1 PC74HC273
1027	1231098	IIC, SOIC TRANSISTOR	156289	IULN-2803LW
1 U 28	1231120	IIC, 8-BIT, PARALLEL/SERIAL OUT S.R.	118324	$174 \mathrm{HCT166D}$
1 U29	1231131	IIC, digital, SHIFT REGISTER	118324	$1 \mathrm{PC} 74 \mathrm{HCT164D}$
$1 \mathrm{U30}$	1231130	ilc, digital, flip flop	118324	1 PC 74 HC 273
1 U31	1231098	IIC, SOIC TRANSISTOR	156289	IULN-2803LW
1 U32	1231120	IIC, 8-BIT, PARALLEL/SERIAL OUT S.R.	118324	174HCT166D
1 U33	1231131	IIC, DIGITAL, SHIFT REGISTER	118324	\| PC74HCT164D
1 U34	1231131	IIC, DIGITAL, SHIFT REGISTER	\|18324	\|PC74HCT164D
1035	1231120	IIC, 8-BIT, PARALLEL/SERIAL OUT S.R.	\|18324	174HCT166D
1036	\|231152-001	!IC, digital 16L8, PAL	121793	1231152-001
1037	1231147	IIC, MULTIPLEXER	104713	174HC253D
1039	1231147	IIC, MULTIPLEXER	104713	174HC253D
1 U 40	1231096	IIC, QUAD DIFF RECEIVER	101295	\|AM26LS32ACD
1041	1231096	IIC, QUAD DIFF RECEIVER	101295	\|AM26LS32ACD
1 U42	1231125	IIC, DIGItal, LINE DRIVER	127014	\| DS26LS31MN
1043	\| 231154	IIC, PROGRAMMED PLA	121793	1231154
1044	1231153	IIC, PROGRAMMED PLA	121793	1231153
1045	1231094	IIC, DEMUX DECODER	118324	\|N74LS138D
1 U 47	1231135	IIC, DIGITAL, 4-BIT COMPARATOR	118324	1PC74HCT85D
1048	1231093	IIC, QUAD COMPARATOR	104713	ILM339D
\|W3-W6	1601731	ICONNECTOR, PCB, PLUG, 16-PIN	152072	\|CA-D16-23B-43
। W8	1601731	ICONNECTOR, PCB, PLUG, 16-PIN	152072	\|CA-D16-23B-43
\| W9	1601731	ICONNECTOR, PCB, PLUG, 16-PIN	152072	\|CA-D16-23B-43
\| W11	1601731	ICONNECTOR, PCB, PLUG, 16-PIN	152072	\|CA-D16-23B-43
\| W12	1601731	ICONNECTOR, PCB, PLUG, 16-PIN	152072	\|CA-D16-23B-43
\% 21	1080119	\|RES NETWORK, 220K	191637	ISOMC-1603-224K
1 z 2	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
123	1080119	\|RES NETWORK, 220K	191637	ISOMC-1603-224K
124	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
125	1080119	\|RES NETWORK, 220K	191637	I SOMC-1603-224K
126	1080117	\|RES NETWORK, 16P8R, 47K	173138	$1628-\mathrm{AL}-473 \mathrm{~J}$
127	1080119	\|RES NETWORK, 220 K	191637	I SOMC-1603-224K
128	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
129	1080119	\|RES NETWORK, 220 K	191637	ISOMC-1603-224K
1210	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
$1 \mathrm{Z11}$	1080119	\|RES NETWORK, 220 K	191637	1SOMC-1603-224K
1212	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
1213	1080119	\|RES NETWORK, 220K	191637	ISOMC-1603-224K
1214	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
IZ15	1080119	\|RES NETWORK, 220K	191637	ISOMC-1603-224K
1216	1080117	\|RES NETWORK, 16P8R, 47K	173138	1628-AL-473J
1217	1080120	\|RES NETWORK, 10K	111236	1767-161R10K
$1 \mathrm{Z18}$	1080114	\|RES NETWORK, 16P8R, 15K	173138	1628-AL-153J
\|\{43\}1	1401951	\| PCB ASSY., LBUS JUMPER	121793	1401951
\| (44) 1	1401951-003	\|PCB ASSY.. P3 JUMPER	121793	1401951-003
\| 445$\} 1$	1415056	(PCB, 1260-64 (UNLOADED)	121793	1415056
($\{48\}$ A/R	1500022	IWIRE, BARE COPPER/TIN, 22 GA	121793	1500022
[\{50\}A/R	1501376	\|TUBING, TEFLON, $20 \mathrm{GA}, \mathrm{THIN}$ WALL	129005	1 TW20GA
$1\{55\} 4$	1611258-001	IStANDOFF, SWAGE 4-40 X . 170	106540	18091-11B-B-440-28
I \{56\}2	1611260	ISTANOFF, SWG, 4-40 X 1.138L	151506	151075HB105-1.138L
1\{79]6	1920971	IFUSE CLIP, PC MOUNT	175915	1122088

Parts List 7-8

List of Suppliers

Parts List 7-9

This page was left intentionally blank.

Chapter 8

OPTIONAL HARNESS ASSEMBLIES

The following harness assemblies are used to connect Racal Instruments Model 1260-64 to Freedom Series Test Receiver Interfaces.

Each harness documentation consists of an assembly drawing, parts list, system wire list, and wire list.

407321, Virginia Panel, Inc. Series VP90 Interface Harness.
For more information on Racal Instruments complete line of Test Receiver Interface solutions, contact your Sales Representative.

This page was left intentionally blank.

ENGINEERING PARTS LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE	
1	$\begin{aligned} & \mathrm{J} 101-1 \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S1-1 } \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 1-1	
2	$\begin{aligned} & \hline \mathbf{J} 101-2 \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S1-2 } \\ & (602231) \end{aligned}$	COAX	500317	$54 "$	SW 1-2	
3	$\begin{aligned} & \hline \mathrm{J} 101-3 \\ & 602230 \end{aligned}$	$\begin{aligned} & S 1-3 \\ & (602231) \end{aligned}$	COAX	500317	54"	SW 1-3	
4	$\begin{aligned} & \hline \mathrm{J} 101-4 \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S1-4 } \\ & (602231) \end{aligned}$	COAX	500317	54	SW 1-4	
5	$\begin{aligned} & \hline \mathrm{J} 101-5 \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S1-5 } \\ & (602231) \end{aligned}$	COAX	500317	54"	SW 1-5	
6	$\begin{aligned} & \hline \text { J101-6 } \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S1-6 } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 1-6	
7	$\begin{aligned} & \hline \text { J101-7 } \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SI-COM } \\ & (602231) \end{aligned}$	COAX	500317	$54 *$	SW 1-COM	
8	J101-8	NO CONN					
9	$\begin{aligned} & \mathrm{J} 102-1 \\ & 602230 \end{aligned}$	$\begin{aligned} & \hline \text { S2-1 } \\ & (602231) \end{aligned}$	COAX	500317	$54 "$	SW 2-1	
10	$\begin{aligned} & \hline \mathrm{J} 102-2 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S2-2 } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 2-2	
11	$\begin{aligned} & \hline J 102-3 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 2-3 \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 2-3	
12	$\begin{aligned} & \hline \mathrm{J} 102-4 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 2-4 \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54{ }^{\prime \prime}$	SW 2-4	
13	$\begin{aligned} & \hline \mathrm{J} 102-5 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S2-5 } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 2-5	
14	$\begin{aligned} & \hline \text { J102-6 } \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S2-6 } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 2-6	
15	$\begin{aligned} & \hline \mathrm{J} 102-7 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S2-COM } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 2-COM	
16	J102-8	NO CONN					
17	$\begin{aligned} & \mathrm{J} 103-1 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33-1 \\ & (602231) \end{aligned}$	COAX	500317	54 "	SW 3-1	
18	$\begin{aligned} & \mathrm{J} 103-2 \\ & 602230 \end{aligned}$	$\begin{aligned} & \mathrm{S} 3-2 \\ & (602231) \end{aligned}$	COAX	500317	$54 "$	SW 3-2	
19	$\begin{aligned} & \text { J103-3 } \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & S 3-3 \\ & (602231) \end{aligned}$	COAX	500317	$54 "$	SW 3-3	
20	$\begin{aligned} & \mathrm{J} 103-4 \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S3-4 } \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 3-4	
21	$\begin{aligned} & \hline J 103-5 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 3-5 \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54 "$	SW 3-5	
22	$\begin{aligned} & \mathrm{J} 103-6 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 3-6 \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 3-6	
23	$\begin{aligned} & \hline \mathrm{J} 103-7 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S3-COM } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 3-COM	
24	J103-8	NO CONN					
25	$\begin{aligned} & \hline \mathrm{J} 104-1 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S4-1 } \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 4-1	
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718							
DOCUMENT TITLE			SIZE	CODE NO.	DOCUMENT NO.		REV
HARNESS ASSEMBLY, 1260-64, VP90			A	21793	407321		A
			DRN		\% ${ }^{\text {4 }}$		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE	
26	$\begin{aligned} & \hline \mathrm{J} 104-2 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 4-2 \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 4-2	
27	$\begin{aligned} & \hline \text { J104-3 } \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S4-3 } \\ & (602231) \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 4-3	
28	$\begin{aligned} & \hline \mathrm{J} 104-4 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & S 4-4 \\ & (602231) \end{aligned}$	COAX	500317	54"	SW 4-4	
29	$\begin{aligned} & \hline \text { J104-5 } \\ & 602230 \end{aligned}$	$\begin{aligned} & \text { S4-5 } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 4-5	
30	$\begin{aligned} & \hline \mathrm{J} 104-6 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline S 4-6 \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	54"	SW 4-6	
31	$\begin{aligned} & \hline \mathrm{J} 104-7 \\ & 602230 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S4-COM } \\ & (602231) \\ & \hline \end{aligned}$	COAX	500317	$54^{\prime \prime}$	SW 4-COM	
32	J104-8	NO CONNE					
33	$\begin{aligned} & \mathrm{J} 100-1 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J1-A } \\ & 602092-001 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54^{\prime \prime}$	BANK A, EXTERNAL B+	
34	$\begin{aligned} & \mathrm{J} 100-33 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \text { J1-C } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54^{\prime \prime}$	BANK A, EXTERNAL B+	
35	$\begin{aligned} & \mathrm{J} 100-2 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \text { J1-E } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & \hline 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A, EXTERNAL B+	
36	$\begin{aligned} & J 100-34 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 1-\mathrm{H} \\ & 602092-001 \end{aligned}$	$\begin{aligned} & \hline 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A. EXTERNAL B+	
37	$\begin{aligned} & J 100-3 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { JI-x } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A, EXTERNAL GND	
38	$\begin{aligned} & J 100-35 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 1-\mathrm{y} \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \mathrm{AWG} \\ & \text { WHT } \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A, EXTERNAL GND	
39	$\begin{aligned} & \mathrm{J} 100-4 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 1-\mathrm{z} \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54^{\prime \prime}$	BANK A, EXTERNAL GND	
40	$\begin{aligned} & \mathrm{J} 100-36 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J1-AA } \\ & 602092-001 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54^{\prime \prime}$	BANK A, EXTERNAL GND	
41	$\begin{aligned} & \mathrm{J} 100-5 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J1-BB } \\ & 602092-001 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \mathrm{AWG} \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 602201- \\ & 806 \\ & \hline \end{aligned}$	$54 "$	BANK A, EXTERNAL GND	
42	$\begin{aligned} & \mathbf{J 1 0 0 - 3 7} \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J1-d } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A, CONTACT 0	
43	$\begin{aligned} & J 100-6 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J1-L } \\ & 602092-001 \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54 "$	BANK A, CONTACT 1	
44	$\begin{aligned} & \mathrm{J} 100-38 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { J1-b } \\ & 602092-001 \\ & \hline \end{aligned}$	$24 \text { AWG }$ WHT	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54^{\prime \prime}$	BANK A, CONTACT 2	
45	$\begin{aligned} & J 100-7 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \text { J1-S } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	54"	BANK A, CONTACT 3	
46	$\begin{aligned} & J 100-39 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \mathrm{J} 1-\mathrm{a} \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \text { AWG } \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54 "$	BANK A, CONTACT 4	
47	$\begin{aligned} & \mathrm{J} 100-8 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \hline \text { J1-k } \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \mathrm{AWG} \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 602201- \\ & 806 \end{aligned}$	54	BANK A, CONTACT 5	
48	$\begin{aligned} & \mathrm{J} 100-40 \\ & (602201-001) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J1-t } \\ & 602092-001 \end{aligned}$	$24 \mathrm{AWG}$ WHT	$\begin{aligned} & 602201- \\ & 806 \\ & \hline \end{aligned}$	$54{ }^{\prime \prime}$	BANK A, CONTACT 6	
49	$\begin{aligned} & \text { J100-9 } \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \hline \mathrm{JI}-\mathrm{w} \\ & 602092-001 \end{aligned}$	$\begin{aligned} & 24 \mathrm{AWG} \\ & \text { WHT } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 602201- \\ & 806 \\ & \hline \end{aligned}$	$54 "$	BANK A, CONTACT 7	
50	$\begin{aligned} & \mathrm{J} 100-41 \\ & (602201-001) \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 1-\mathrm{j} \\ & 602092-001 \end{aligned}$	$24 \text { AWG }$ WHT	$\begin{aligned} & 602201- \\ & 806 \end{aligned}$	54"	BANK A, CONTACT 8	
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718							
DOCUMENT TITLE			SIZE	CODE NO.	$\frac{\text { DOCUMENT NO. }}{407321}$		REV
			A	21793			A
HARNESS ASSEMBLY, 1260-64, VP90			DRN			\| SHEET 5 of 7	

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

This page was left intentionally blank.

Chapter 9

PRODUCT SUPPORT

Product Support

Reshipment Instructions

Racal Instruments has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262.
If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closes to your facility, refer to the Support Offices section on the following page.

Use the original packing material when returning the 1260-64 to Racal Instruments for calibration or servicing. The original shipping crate and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact Racal Instruments Customer Service for information.

Support Offices

Racal Instruments, Inc.
4 Goodyear St., Irvine, CA 92618-2002
Tel: (800) RACAL-ATE, (800) 722-2528, (949) 859-8999; FAX: (949) 859-7139

Racal Instruments, Ltd.
480 Bath Road, Slough, Berkshire, SL1 6BE, United Kingdom Tel: +44 (0) 1628 604455; FAX: +44 (0) 1628662017

Racal Systems Electronique S.A.
18 Avenue Dutartre, 78150 LeChesnay, France
Tel: +33 (1) 3923 2222; FAX: +33 (1) 39232225
Racal Systems Elettronica s.r.I.
Strada 2-Palazzo C4, 20090 Milanofiori Assago, Milan, Italy Tel: +39 (0)2 5750 1796; FAX +39 (0)2 57501828

Racal Elektronik System GmbH.

Technologiepark Bergisch Gladbach, Friedrich-Ebert-Strasse, D-51429 Bergisch Gladbach, Germany
Tel.: +49 22048442 00; FAX: +49 2204844219

Racal Australia Pty. Ltd.

3 Powells Road, Brookvale, NSW 2100, Australia Tel: +612 9936 7000, FAX: +612 99367036

Racal Electronics Pte. Ltd.

26 Ayer Rajah Crescent, 04-06/07 Ayer Rajah Industrial Estate, Singapore 0513.
Tel: +65 7792200, FAX: +65 7785400

Racal Instruments, Ltd.

Unit 5, 25F., Mega Trade Center, No 1, Mei Wan Road, Tsuen Wan, Hong Kong, PRC
Tel: +852 2405 5500, FAX: +852 24164335

[^0]: 4 C3, C8, C9, AND CIOARE NOT INSTALLED
 3. RELAYS K1 THRU K32 ARE

[^1]: Parts List 7-4

